
Sketching in Hardware and Building Interaction Design: tools, toolkits and
an attitude for Interaction Designers

Camille Moussette, Umeå Institute of Design, Umeå University, Sweden,
camille.moussette@dh.umu.se

Fabricio Dore, IDEO, Munich, Germany, fdore@ideo.com

Abstract

In this paper, we present a Sketching in Hardware perspective to Interaction Design (IxD)
education and practice. We start our discussion by highlighting the differences between
Prototypes and Sketches, and explaining why we believe the term Sketching in Hardware is
suitable and appropriate to the IxD practice. We introduce a short history of the term and its
origins before relating it to Experience Prototyping activities and other related design
processes/methodologies.

Our main discourse consists of observations and a critical analysis of academic activities and
professional work suggesting that Sketching in Hardware remains quite challenging despite the
recent progress in the development of new tools and toolkits. The low barrier to entry and the
explosion of tools and toolkits are very welcome, but this democratization can also be
misleading. The learning curve is still steep in many ways. The current sketching tools seem to
have leapfrogged our design skills and our ability to deal with that avalanche of technical
capabilities. Designers regularly loose a critical perspective on their sketching and prototyping
activities. We noted that students and designers alike spend a lot of time mastering intricate
tools and debugging technical issues when they should be developing, evolving and fine-tuning
interesting experiences or sketches informing their design process.

We close our discussion with a review of various toolkits and building blocks currently available
to interaction designers for designing new technology and future concepts. We ultimately
suggest five guiding principles to be taken into account in the design of new toolkits or
upgrading of existing ones. These same principles and qualities not only can, but should also
radiate in the experiential qualities, well beyond the built material artifacts. Sketching in
Hardware is not just playing with electronics; it has serious implications and repercussions in the
way we design stuff.

Keywords

Interaction Design, Prototypes, Prototyping, Sketches, Sketching in Hardware, Toolkits,
Experience, Design Tools.

Prototyping is a core aspect of design activities. As a loose definition, prototypes are
manifestations of a design made before the final artefacts exist. Many authors have written
about the various forms and variations of prototyping activities (Buchenau & Suri, 2000; Buxton,
2007; Houde & Hill, 1997; Lim, Stolterman & Tenenberg, 2008; Shön, 1982). They often diverge
in the specifics but globally, they describe the same design activities used to filter a design-
space and build corresponding representations. In the field of Interaction Design (IxD), such
design activities are often encompassed in terms like Experience Prototyping, Hardware

Prototyping and Physical Computing. Our main objective with this paper is to present a new
perspective on sketching in Interaction Design and describe our view of how students and
designers go about it.

Sketches are not Prototypes

A few authors like McCullough (1996) and Buxton (2007) point out the importance of the
mediums and that prototypes are different from sketches. Sketches, in any mediums, have
different qualities and purposes. Without simplifying too much, sketches are generally used and
valued earlier in the design process, while prototypes are more beneficial towards the later
stages of the process. These two representations have their own specific role, intent, qualities
and purposes in a designer’s toolbox. Buxton (2007) proposes this comparison or continuum
(Fig. 1). In our view, while this polarization can be useful to discuss and understand the
differences, most design manifestations sit somewhere in the middle, depending on the context
and situation they originated from.

Figure 1. The Sketch to Prototype Continuum (Buxton 2007)

Prototyping is a term widely used in many domains outside design. In software development, a
prototype is generally understood as a working proof of concept, a partial instantiation of the
final application where some aspects are usable for testing or internal reviews with client, users
and contractors (Floyd, 1984; Wikipedia, 2010). The focus is clearly towards showcasing
solutions, evaluating options and agreeing on specifications, all of which are situated in the later
stages of development. Although newer approaches and methods are breaking this tradition
(agile method), prototyping in software development involves very little ideation and explorative
and noncommittal activities.

In Industrial Design and Product Engineering, a prototype corresponds often to the latest
instantiation before going to final production (Feirer, 2002). All problems are solved at this stage
and the prototype is (ideally) an one-off copy of the upcoming production item. What comes
before the prototype adopts a variety of names depending on the use and purpose: exploration
models, volumetric or form study models, visual models, functional models, proof-of-principle

models, engineering models, throwaway prototypes, concept prototypes, etc. Sketches are also
well understood and highly valued in Industrial Design. They are fast, explorative and tentative
representations to exteriorize and communicate ideas. Additionally, the self-reflective qualities
of sketching are often more important than the resulting sketches themselves (Hanks &
Belliston, 1990). Numerous authors have highlighted the crucial underlying processes of
sketching that support creative thinking (Schön & Wiggins, 1992).

From our perspective, we believe ‘sketching’ is an important term that designers and design
students should be using more when referring to design activities that relate to evolving and
building interaction ideas creatively. Although not perfect, the term ‘Sketching in Hardware’
reflects well the action of sketching in any mediums (with or without computing capabilities) well
beyond pen and paper. Compared to ‘prototyping’, ‘sketching’ feels definitely more appropriate
for evolving ideas and developing design concepts. To our knowledge of educational
curriculums and today’s practice in design consultancies, very few designers work in the later
phases of the design process: close to mass manufacturing and production, where ‘real’
prototypes are commonly found. These activities tend to be very technical and are naturally best
handled by competent engineers and professional builders.

History of Sketching in Hardware

The term Sketching in Hardware is not exactly new. Researchers like Holmquist (2006) have
introduced the term some years ago, and it is somewhat present in today’s IxD teaching
curriculum and professional practice.

It is important to note that although the term is relatively new, the activities and motivations have
been around for decades. Companies, design consultancies and research groups have been
developing interactive physical products or projects with a strong focus on early electronic
sketches or half-faked interactive demos (Fitzmaurice, 1993). Almost a decade ago, Greenberg
& Fitchett (2001) introduced Phidgets as a toolkit to support, build and test physical interfaces
quickly. During the following years, the ideas and tools evolved rapidly, left the research labs
and gained widespread adoption in design school and consultancies. The term ‘Experience

Prototyping’ is well recognized today in the design community and has strong roots with the
user-centered design movement (Buchenau & Suri, 2000). We agree that both Experience

Prototyping and Sketching in Hardware have a lot in common and are almost interchangeable.
Our intention with this paper is not to argue over exact definitions, but more trying to describe,
understand and enhance the design activities taking place. Let us just finish by mentioning that
both terms complement each other very well, Sketching in Hardware, due to it’s strong sketchy,
almost messy and more designerly connotations, has the benefit of emphasizing the material
and experimental qualities, whereas Experience Prototyping highlights that the goal is to design
and support the experience and not the prototype (or the built artefact).

Sketching and building Interaction Design differently

Technical know-how can be a blessing or a curse

From our teaching and tutoring experience (as well as being students ourselves), we observed
that students are often mesmerized by the new technological and technical possibilities.
Discovering new technology and being able to appropriate it to build something that works

(partially at least) is usually very satisfying and gratifying. It is somewhat natural to be in that
‘wow phase’.

But designers have to move on and make good and meaningful use of those tools. As good
craftsmen, designers should avoid pursuing a project (or prototyping) relentlessly to a point
where it becomes self-conscious demonstration and point-less perfectionism (Sennett, 2008).
Great and seductive demos and prototypes surely have their value in the design process, “but
they are only one part of a means to an end, and certainly not the end in itself” (Buxton, 2007, p.
412)

However, the skills and knowledge required to build hardware sketches are difficult to outline,
mostly because the nature of the work spans many disciplines and domains. Technical know-
how in electronics, mechanical systems, programming, sensors and the like are absolutely
helpful, but so is knowledge in improvisation, performance arts, storytelling, communication,
movie making and psychology. In our opinion, it is not necessarily the sketch you make that
counts, it is how you use it to inform your design activity.

Figure 2 Shopping Cart prototype, an example of over-prototyping (image credit: George Paravantes and
Amid Moradganjeh)

Throughout the courses we teach in Experience Prototyping and Sketching in Hardware, we
repeatedly have technically-inclined students who have difficulties balancing technical prowess
and the actual design outcomes they get from building hardware sketches. They build
technically impressive stuff “because they can”. Despite clear learning benefits, we feel these
projects are missing core characteristics of Sketching in Hardware, namely the noncommittal,
rapid and disposal aspects. Whatever comes out of these sketches has usually very little to do
with the actual design project they are associated with. Impressive: sometimes; informative to

the design project: often no. Figure 2 shows an example of an ‘over-prototyped’ project realized
by two interaction students at the Umeå Institute of Design. The realization of the hardware
sketch of a shopping cart represents a substantial amount of work. It never worked properly and
was never presented to users or other participants. The remaining of their project was terribly
well executed and coherent. In short, it didn’t help or support their design project significantly.
We can see in it a perfect example of a prototype realized just for the sake of prototyping.

At the other end of the spectrum, designers and students with no programming or electronics
knowledge have also their share of challenges. Although quite approachable, most tools or
toolkits still require some understanding of programming, code and electronics. Without these
skills, it is very difficult to evolve beyond ready-made examples and pre-caned configurations.
Students often feel frustrated when they cannot get anything interactive working on their own.
We understand their frustration but encourage them to try different routes or attack smaller and
more manageable problems. What these students are generally very good at is finding
alternatives and detours around problems, to eventually reach their intended goal (or a different
one).

We see this ‘problem-solving with detours’ as a highly valuable skill in Sketching in Hardware
because it is humanely impossible to know everything. Everyone has his/her limits. How one
manages to keep moving forward despite these hurdles and constraints is in our opinion
admirable. We could call this cleverness or pragmatic sketching.

In an ideal world, students and designers should have the perfect mix of technical skills and
creative approaches to evolved complex but useful and informative hardware sketches. There
are no magic recipes or prescriptive notions that dictate how one should go about building
hardware sketches and using them in a particular project. It is a life-long (or career-long)
learning experience.

Bringing back the Experience

Prioritizing design outcomes over technical know-how

The current prototyping toolkits use technology about 10 to 20 years old, if not more. Compared
to what can be found in the latest electronic devices today, they are dinosaurs. From an
engineering perspective they are almost laughable. Therefore, having something that works
using those toolkits might be personally gratifying, but from a technical standpoint it is not
exactly groundbreaking. The real value for designers and other collaborators in toolkits comes
from leveraging their simplicity, mixing and remixing technology with creative processes, and
most importantly aiming on the experiential outcomes and not so much on the process of
‘making it work’.

We have seen that in other disciplines like Industrial Design (ID), doodles or volumetric models
fulfill different functions during the design process. The vocabulary in ID is not extremely sharp,
but decades of activities have laid considerable foundations to describe processes and
methodologies that are commonly agreed upon. The Interaction Design discipline is in its
infancy. Our current shared vocabulary, mostly adopted from other disciplines, often falls short
to properly describe the dynamic nature of our sketches and interactive prototypes. We usually
try to minimize this gap the best we can by using a variety of mediums and interactive
depictions (like hardware sketches). Without a clear vocabulary and understanding that
intuitively connects intent and outcomes, designers can sometimes find themselves focusing on
building something that works and not explicitly identifying why they are sketching for.

In our view it is important to consider that hardware sketches can also work as tangible and
intellectual springboards towards other disciplines. They help the designer play in other
disciplines’ sandboxes, and learn how to better communicate their design ideas in different
technical jargons. Finally, hardware sketches and experience prototypes are key components in
establishing shared reference points with colleagues, users and other collaborators. They
naturally invite others to relate and build on something (half) real, tangible and concrete.

Toolkits: technology building blocks for Interaction Designers

A toolkit has to be useful and helpful to its users: that is easier said than done. What is useful to
reach these sketching in hardware objectives? The big answer is: it depends! As we highlighted
above, each project is unique and the designer’s skills and understanding of hardware sketches
are constantly changing. Toolkits need to balance flexibility and simplicity. What is useful for a
first-time user can be very different for an advanced user. An advanced user might enjoy very
basic features if pressed by time or under certain condition/mindset. So it is never black or
white. It’s all grey!

In our quest towards a better education curriculum and a more enjoyable IxD practice, we
decided to reflect on what would be, in our view, the ideal toolkit for interaction designers. We
quickly came to the conclusion that it is futile to think that such unique magic-bullet toolkit exists.
If we look back at history, we notice that a multiplicity of tools and toolkits will always prevail,
some very highly specialized ones, others more multipurpose and aimed for general use.

Despite this failed intellectual attempt, we believe that current toolkits are not always well suited
for Sketching in Hardware activities. In regards to the current status of the design practice, we
think there is definitely room for improvement in many areas. Students and designers are often
struggling on the same issues over and over again. We think new or improved tools and toolkits
could be developed to better match today’s needs in sketching in hardware activities. These
beliefs come from our experience in teaching and using such tools ourselves, but they are also
inline with similar discourses from numerous researchers and teachers in the field of Interaction
Design (Buxton, 2007; Moussette 2007; Saffer, 2009)

We identified five high level characteristics or qualities that should be supported or at least
considered when developing new toolkits for interaction designers. They are presented in no
particular order of importance. We try to support each point with concrete propositions,
examples or critique found in today’s toolset.

Openness and level of visibility/accessibility

Just like Nature, complex and elaborate systems are made of simple underlying parts or
processes. Accessing and peeking at how things work or are composed can be very beneficial
to develop a good understanding.

The goal is not to expose and decompose all processes, but allow for different levels of
visibility/accessibility. Complex processes can be encapsulated in simple
representations/actions to ease introduction and support high-level perspective/work. The inner
working processes should be accessible if one is interested to dig in. Some complexity can be
exposed to invite or tease the user to explore more. The level of details cannot be infinite, but
documentation should be as good as possible. Knowing that one can further explore references,
sources, libraries and other internal details is very reassuring, even though very few are actually
doing it. Open-source software and hardware like Processing and Arduino exist and are
successful because of the all-embracing commitment to this openness principle.

On a more graphical level, applications like LabVIEW, VVVV, MaxMSP and Pure Data offer
simplified graphical dataflow programming environments where encapsulation is obvious.
Advanced and curious users can access the functional code behind each individual graphical
node. Expert users can often build new functionalities into the tool if the underlying processes
are exposed properly.

Each design problem can be said to be unique. Manufacturers and toolmakers cannot
realistically envision every possible use or situation for their tools. With open tools, designers
and users can fully embrace the system, and effectively help the producers to refine or enhance
their offerings. Note that simplicity or reduction in complexity doesn’t translate to simple or trivial
work. Some level of abstraction is necessary for humans to cope with complex task or
endeavors.

Hackability

By hackability, we mean that parts, modules, or the whole toolkit should be open for unintended
and unplanned uses. While manufacturers cannot obviously support these activities, the design
or functions should not thwart those who feel adventurous. For example, parts from one toolkit
should be usable with other toolkits without major difficulties.

Figure 3 Sparkfun's RFID module, with numerous exposed connectors. Ready for repurposing or hacking
(image credit: Sparkfun.com)

Sparfun’s model (Fig 3) provides breakout pins for wiring extra parts or using the module with
other than the default USB port. By exposing the already-available functions, one can repurpose
it more easily. The module from Sparkfun uses a very ubiquitous technology (RS232 serial
communication) to transmit its data. The design is intentionally simple. This simplicity has a
cost. The module is quite dumb and only send data values. Once attached to a computer, it
cannot announce its functionalities and share other secondary status or auto-configuration data.

Figure 4 Phidgets RFID module. Friendly but a closed platform, on the hardware side at least. (image
credit: Phidgets.com)

The Phidgets module (Fig. 4) works with a special set of hardware and software combination
and offers advanced software functionalities (notification when the RFID tag is removed). This
tighter integration can be a double edge sword: it is simple and works very well as long as you
work within the limits offered by the manufacturer. Outside this area, it is very difficult if not
impossible to reuse the module and combine it in your own ways. For example, it is impossible
to use with a dedicated microcontroller due to the USB connectivity. By design, it has to be plug
into a computer to work, despite the low computation power required to send and receive RFID
tag values.

Added value when time is limited

The ability to get going quickly and get results fast, within minutes if often crucial in the design
practice. In educational settings the time constraints are not so present and crucial.
Nevertheless, the focus or the work should be elaborating on variations of the experiences, not
on debugging technical issues.

Figure 5 A proposal for new TinkerKit modules, with emphasis on labels and at glance information.

Labels, diagrams, numbering and details on the device are crucial for novice users, or users
under stress or pressure. These details usually incur no additional hardware costs, but they do
require extra care and attention by the people who develop the tools. What can be evident to an
electronic engineer (designer/builder of such modules) might not be obvious to an interaction
designer. Having to download and look up a PDF document just to find how much voltage is
needed to power a device is frustrating and not efficient.

At IDEO and presumably in many other design consultancies, the most challenging
sketching/prototyping issues lay beyond the technical skills of its designers. The difficulties
reside in how to balance build-to-learn – from the medium or experimentation – and build-to-
gather rich user feedback within a constrained timeframe. Projects last on average 12 to 16
weeks. The team needs to define the problem, come up with innovative concepts and provide
deliverables that have the potential to outlive inside the clients’ organizations and ultimately
impact their product portfolio and business.

Spending anything more than a few days building something is a luxury and need to be well
justified even within a company with a strong culture of prototyping like IDEO (Buchenau & Suri,
2000). Prioritization is key and there isn’t much time available for experimentation. Low-fidelity
prototypes are still useful to gather initial feedback but once we move towards designing the
user experience, the fidelity needs to be tuned up immediately for two reasons. First, because
the user experience usually means ‘behaviors, transitions or gestures’ that might have never
been done before; second, because users are increasingly technology and user-experience
savvy. Obtaining a ‘suspension of disbelief’ when presenting pen and paper concepts for
electronics devices is becoming harder and harder.

From our experience in practice, only a few (2-3) serious prototypes/hardware sketches are
realized for a particular project. Their aim is to have the most impact in the overall design, or
present extreme concepts that occupy opposite places on a scale (e.g. knobs and levers vs
touch screen and voice commands) and that can be used to align the designers’ intents with
real user expectations.

No matter how diverse the project challenge is, three points or needs consistently show up
when developing hardware sketches under stringent time constraints. For us, the ideal tools or
toolkits would:

- allow the designers to experiment different versions of the ‘experience’,
- build something convincing to be presented in user feedback sessions and
- allow for improvements and modifications at a later point in time.

Versatility or 5 ways of doing the same thing

Design is all about exploring options and possibilities. The toolkits shouldn’t force the users into
a monolithic approach and impose an unique way to solve a particular problem.

We find value in approaching a problem from many angles and perspectives. Building or
sketching interaction can take so many forms. The continuum from a highly specialized tool to a
totally generic device is vast.

If we take the case of Phidgets, designers have a large choice of programming languages and
platforms to develop and build their ideas. An expert user can use C++ to configure and interact
with the devices, while a novice designer might use Actionscript or Java instead. The
manufacturer of the system supports both equally.

On the hardware side, electronics modules can “speak” many protocols and adapt to various
host systems. For example, a particular distance sensor can work in analog mode for simplicity

and out-of-the-box use without reading much documentation. The same sensor can also be
connected using a serial protocol in order to reconfigure it or send more complex
commands/queries. This versatility comes with some drawbacks (the device in inherently more
complex), but does offer flexibility and some form adaptability.

Generally, exploring options and possibilities will involve more than one system or toolkit. Mixing
and matching different components in new and creative ways help designers the space of
possibilities. We appreciate tools and systems where designers can come in and apply
knowledge they already acquired previously. Each tool has its limitation and requirements, but
often a knowledgeable user will be able to quickly get up to speed if the tool follows best
practices and general conventions. Having to learn new ways of working can be frustrating and
time consuming.

Human friendly

Technology should speaks for itself, ‘transpires’ its status or ways of working. Power lights,
communication status, functions broadcast, non-symmetrical connections are small details that
make the life of designers so much more enjoyable (or less painful).

One recent example that our students have been struggling with is the new ActionScript 3.0
language from Adobe. When writing code in the Flash application, one has to include and
specify various libraries to add functionalities to the interactive application. The application
requires you to “include” and type the exact name of the libraries you want and need to use. For
an experienced programmer, this might be standard or obvious procedure, but for a designer
this is quite tricky. How one should know which libraries to include and what is the exact name
for it, even if it was never encountered before? No default choice, pre-made lists or options are
offered to the user. You have to look deep down in the documentation to find that information,
and manually type the information in your document. It is not very straightforward and satisfying
indeed. You inevitably learn the most common ones quickly.

Figure 6 Processing application and the available libraries selection.

If we compare this experience to developing software sketches in the Processing application,
the task is almost the same, but the application in this case provides various cues and
selections to choose from. First the application has default libraries covering the core
functionalities, so you do not have to write anything for the standard libraries. Second, if you
need to use a specialized library or set of functions, a menu entry lists all the installed and
available additional libraries. In one or two clicks, one can choose, include and readily use new
functionalities in your sketch (Fig 6). We find this procedure definitely more humane, at least for
novice and casual programmers like us.

On the hardware side, we strongly encourage the widespread use of status lights to
communicate power status and activity right at the hardware layer. It is much easier to track
down problems with blinking LED (or absence of it) instead of writing custom debugging code in
software. A quick glance at a power status light will let you know if the device is properly
powered. Physical affordance can definitely help too. Non-symmetrical connectors enforce the
right polarity when connecting devices and cables. They often incur no or ridiculously low
additional costs (fraction of a cent) in parts. Small details like this make huge difference in the
long run. All humans make errors, even the highly trained ones.

Discussion

Figure 7 A non-working depiction of inline operator module.

Our work is currently ongoing but we are actively developing instances of tools where these
values or qualities are put forward. We are building on previous tools and toolkits, leveraging
previous successes and de facto best practices and standards. Figure 7 shows an early sketch
of inline operators that provide a tangible control over sensors and various modules. The
operator allows one to explore and adapt to a much wider spectrum of values, without changing
code or sensor module. It supports expanded design explorations in a simple tangible way.

Figure 8 Smart sensors/modules can be used with different host systems

The availability of faster and more powerful microcontrollers means we can build “smart” toolkits
and sensors more easily. When connected, modules broadcast their functionalities and
requirements, and then establish the most desirable protocol of connection or communication.
Simple analog parts can be mixed and combined with fancier or more complex ones. Older
parts and items can be used without worrying about compatibility and interoperability. Designers
can focus more on the outcomes of their sketching, and less on the technical side of things.
Figure 8 shows how a particular smart light sensor would work depending on the capability of
the host system. It would transmit configuration and status data only if the host module can
receive and understand it. Otherwise, the smart light sensor would revert to a simpler analog
mode, or even to a binary mode (on/off) if necessary.

This is work in very early stages. We hope to refine our ideas and sketches further, and
evaluate them with design students and practicing professionals in design consultancies.

Conclusion

With this paper, our main objective was to present the Sketching in Hardware perspective in the
field of Interaction Design, and explain our view and experience around those somehow new
ways of building or sketching ideas. We observed and noted numerous challenges, but also
very rich and stimulating design activities. Despite our criticisms, we strongly believe in this new
perspective and its potential for establishing a strong understanding of interaction concepts,
solidifying prototyping knowledge and taking sketching activities to a new level. Designers have

to know their limits and when it is advisable to ask other professionals. Sketching in Hardware is
not just playing with electronics; it has serious implications and repercussions.

Ultimately there is an open discussion that pervades the professional practice of (interaction)
design about whether designers should focus on being excellent craftsmen of human-to-human
and human-to-device interactions, or should designers excel as good design generalists ready
to take on challenges a few levels up in abstraction (the big picture). It is our belief that one
cannot live without the other. Some designers will go deep into the technical side and into the
art of crafting intricate interactions, while others will focus on high-level themes and global
agendas. We hope those sketchers and visionary designers can together build a better and
more enjoyable world.

References

Buchenau, M. and Suri, J. F. (2000) Experience prototyping. In Proceedings of the Conference

on Designing interactive Systems: Processes, Practices, Methods, and Techniques (New York
City, New York, United States, August 17 - 19, 2000). D. Boyarski and W. A. Kellogg, Eds. DIS
‘00. ACM Press, New York, NY, 424-433.

Buxton, Bill, (2007). Sketching User Experiences: Getting the Design Right and the Right
Design, Morgan Kaufmann.

Dore, F. (2009). Sketching in Hardware is Chaning Your Life, Core77.com, retrieved Jan 5
2010, from
http://www.core77.com/blog/featured_items/sketching_in_hardware_is_changing_your_life_by_f
abricio_dore__14769.asp

Fitzmaurice, G. W. (1993). Situated information spaces and spatially aware palmtop computers.
Communications of the ACM (CACM), 36 (7), 39-49

Floyd, C. 1984. A systematic look at prototyping. In Approaches to Prototyping, Budde, R.,
Kuhlenkamp, K., Mathiassen, L., and Zullighoven, H. Eds. Springer-Verlag, Berlin, Germany, 1–
18.

Feirer, M. (2002) Prototypes in Industrial Design: Once a Design Goes Digital, All Sorts of
Things Are Possible, The Technology Teacher, Vol. 61 (2002), pp. 24-29.

Greenberg, S. & Fitchett, C. (2001). Phidgets: easy development of physical interfaces through
physical widgets, In UIST ’01: Proceedings of the 14th annual ACM symposium on User

interface software and technology, ACM Press, 209-218.

Hanks, K. & Belliston, L. (1990). Rapid Viz: A new method for the rapid visualization of ideas.
Menlo Park, California. Crisp Publications.

Holmquist, L. E. (2006) Sketching in hardware. Interactions 13, 1 (Jan. 2006), 47-60.

Houde, S., & Hill, C. (1997). What do prototypes prototype?, in Handbook of Human-Computer

Interaction (2nd Ed.), Elsevier Science B.V: Amsterda.

Lim, Y.-K., Stolterman, E., and Tenenberg, J. (2008). The anatomy of prototypes: Prototypes as
filters, prototypes as manifestations of design ideas. In ACM Transactions on Computer-Human

Interaction (TOCHI). 15,2, Article 7 (July 2008), 27 pages.

McCullough, M. (1996). Abstracting craft: The practiced digital hand. Cambridge, MA: MIT
Press.

Moussette, C. (2007). Tangible interaction toolkits for designers. Scandinavian Student
Interaction Design Research Conference 2007, Sweden.

Norman, D. (2009). Technology First, Needs Last, retrieved Jan 25, 2010, from
http://www.jnd.org/dn.mss/technology_first_needs_last.html

Saffer, D. (2008). Designing Gestural Interfaces. O'Reilly Media, Inc, USA

Schön, D. A. (1982). The Reflective Practitioner: How Professionals Think in Action. Harper
Collins, New York, NY.

Schön, D. A. & Wiggins, G. (1992). Kind of seeing and their function in designing. Design

Studies, 13(2), 135-156.

Sennett, R. (2008). The Crafstman.Yale University Press, London.

Sketching in Hardware (2006), Sketching in Hardware 1: a summit on the design of/with

physical computing toolkits, retrieved Jan 7 2010, from http://www.sketching06.com

Software Prototyping (Wikipedia), retrieved Jan 25, 2010, from
http://en.wikipedia.org/wiki/Software_prototyping

